Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Sci Rep ; 14(1): 5710, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459239

RESUMO

Aiming at oil extraction from a tight reservoir, the Jilin oil field was selected as the research object of this study. Based on the molecular structures of conventional long-chain alkyl anionic surfactants, a new temperature-resistant anionic/nonionic surfactant (C8P10E5C) was prepared by introducing polyoxyethylene and polyoxypropylene units into double-chain alcohols. The resulting structures were characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (1H-NMR), and electrospray ionization mass spectrometry (ESI-MS). Then, based on surface tension, interfacial tension, adsorption resistance, wettability, and emulsification performance tests, the performance of C8P10E5C was evaluated. The FT-IR, ESI-MS, and NMR spectra confirmed that C8P10E5C was successfully prepared. The critical micelle concentration (CMC) of C8P10E5C in water was 2.9510 × 10-4 mol/L (the corresponding mass concentration is 0.26%), and the surface tension of the aqueous C8P10E5C solution at this concentration was 30.5728 mN/m. At 0.3% concentration, the contact angle of the C8P10E5C solution was 31.4°, which is 60.75% lower than the initial contact angle. Under high-temperature conditions, C8P10E5C can still reduce the oil-water interfacial tension to 10-2 mN/m, exhibiting good temperature resistance. At 110 °C, upon adsorption to oil sand, the C8P10E5C solution could reduce the oil-water interfacial tension to 0.0276 mN/m, and the interfacial tension can still reach the order of 10-2 mN/m, indicating that C8P10E5C has strong anti-adsorption capability. Additionally, it has good emulsifying performance; upon forming an emulsion with crude oil, the highest drainage rate was only 50%. The forced imbibition oil recovery of C8P10E5C is 65.8%, which is 38.54, 24.22, and 27.25% higher than those of sodium dodecyl benzene sulfonate, alkyl polyoxyethylene ether carboxylate, and alkyl ether carboxylate, respectively.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38517631

RESUMO

Water and several chemicals, including dyestuffs, surfactants, acids, and salts, are required during textile dyeing processes. Surfactants are harmful to the aquatic environment and induce several negative biological effects in exposed biota. In this context, the present study aimed to assess acute effects of five surfactants, comprising anionic and nonionic classes, and other auxiliary products used in fiber dyeing processes to aquatic organisms Vibrio fischeri (bacteria) and Daphnia similis (cladocerans). The toxicities of binary surfactant mixtures containing the anionic surfactant dodecylbenzene sulfonate + nonionic fatty alcohol ethoxylate and dodecylbenzene sulfonate + nonionic alkylene oxide were also evaluated. Nonionic surfactants were more toxic than anionic compounds for both organisms. Acute nonionic toxicity ranged from 1.3 mg/L (fatty alcohol ethoxylate surfactant) to 2.6 mg/L (ethoxylate surfactant) for V. fischeri and from 1.9 mg/L (alkylene oxide surfactant) to 12.5 mg/L (alkyl aryl ethoxylated and aromatic sulfonate surfactant) for D. similis, while the anionic dodecylbenzene sulfonate EC50s were determined as 66.2 mg/L and 19.7 mg/L, respectively. Both mixtures were very toxic for the exposed organisms: the EC50 average in the anionic + fatty alcohol ethoxylate mixture was of 1.0 mg/L ± 0.11 for V. fischeri and 4.09 mg/L ± 0.69 for D. similis. While the anionic + alkylene oxide mixture, EC50 of 3.34 mg/L for D. similis and 3.60 mg/L for V. fischeri. These toxicity data suggested that the concentration addition was the best model to explain the action that is more likely to occur for mixture for the dodecylbenzene sulfonate and alkylene oxide mixtures in both organisms. Our findings also suggest that textile wastewater surfactants may interact and produce different responses in aquatic organisms, such as synergism and antagonism. Ecotoxicological assays provide relevant information concerning hazardous pollutants, which may then be adequately treated and suitably managed to reduce toxic loads, associated to suitable management plans.

3.
J Hazard Mater ; 469: 133883, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412648

RESUMO

The effect of several prevalent cations (including Na+, K+, Mg2+, Ca2+, Al3+, and Fe3+) on the adsorption of monochlorobenzene (MCB) onto bentonite was investigated at the coexistence of nonionic surfactant Tween 80 (T80) in surfactant-enhanced remediation (SER). They are all favorable for MCB and T80 adsorption, especially Mg2+ and Ca2+. Adsorption of MCB is strongly depended on T80 micelles. When its concentration exceeds the solubility, MCB is easier to bind with T80 micelles and be adsorbed by bentonite. Acidic environment can facilitate MCB and T80 adsorption, but the effect of cations on the adsorption is most significant under alkaline conditions. Adsorption capacity of MCB increases first followed by a slight decrease with increasing cations concentrations. The maximum adsorption rate of MCB determined is about 68.4% in a solution containing Mg2+ in the isothermal adsorption of MCB, while it is only 6.8% in a cation-free solution. Various characterizations showed that cations mainly changed the repulsion between bentonite particles and T80 micelles and the agglomeration and structure of bentonite, thus affecting the adsorption of MCB and T80 micelles. Our research demonstrated the nonnegligible promotion of MCB adsorption on bentonite by cations and acidic environment, which will adversely affect SER efficiency.

4.
Int J Pharm ; 650: 123684, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38070659

RESUMO

The objective of this study was to explore the benefits of transdermal drug delivery systems as an alternative option for patients who are unable to tolerate oral administration of drugs, such as ibuprofen (IB). To achieve this, nonionic surfactants and three cosolvents were employed to develop new microemulsions (MEs) that contained IB as nanocarriers. The aim was to enhance the solubility and bioavailability of the drug after transdermal administration. The MEs were characterised by droplet size, polydispersity index (PDI), and rheological properties. Furthermore, the flux of IB was evaluated by Franz diffusion cells using excised rat skin and in vivo bioavailability using rats. The results showed that the MEs had ideal viscosity and droplet size below 100 nm. Moreover, using the developed MEs, an improvement in the solubility (170 mg/mL) and flux through the rat skin (94.6 ± 8.0 µg/cm2.h) was achieved. In addition, IB demonstrated a maximum plasma level of 0.064 mg/mL after 8 h of transdermal administration in rats using the ME with an increase in the bioavailability of about 1.5 times in comparison to the commercial IB gel. In conclusion, the developed nonionic MEs containing IB can be ideal nanocarriers and promising formulations for the transdermal administration of IB.


Assuntos
Ibuprofeno , Pele , Humanos , Ratos , Animais , Administração Cutânea , Solubilidade , Emulsões/metabolismo , Pele/metabolismo , Sistemas de Liberação de Medicamentos , Disponibilidade Biológica
5.
J Agric Food Chem ; 72(1): 516-528, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38130104

RESUMO

Pterostilbene, a derivative of resveratrol, is of increasing interest due to its increased bioavailability and potential health benefits. Sustainable production of pterostilbene is important, especially given the challenges of traditional plant extraction and chemical synthesis methods. While engineered microbial cell factories provide a potential alternative for pterostilbene production, most approaches necessitate feeding intermediate compounds. To address these limitations, we adopted a modular coculture engineering strategy, dividing the pterostilbene biosynthetic pathway between two engineered E. coli strains. Using a combination of gene knockout, atmospheric and room-temperature plasma mutagenesis, and error-prone PCR-based whole genome shuffling to engineer strains for the coculture system, we achieved a pterostilbene production titer of 134.84 ± 9.28 mg/L from glucose using a 1:3 inoculation ratio and 0.1% dimethyl sulfoxide supplementation. This represents the highest reported de novo production titer. Our results underscore the potential of coculture systems and metabolic balance in microbial biosynthesis.


Assuntos
Escherichia coli , Glucose , Escherichia coli/genética , Escherichia coli/metabolismo , Glucose/metabolismo , Técnicas de Cocultura , Embaralhamento de DNA , Vias Biossintéticas , Engenharia Metabólica/métodos
6.
Nanomaterials (Basel) ; 13(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37630897

RESUMO

Microemulsions are nanocolloidal systems composed of water, an oil, and a surfactant, sometimes with an additional co-surfactant, which have found a wide range of practical applications, including the extractive removal of contaminants from polluted water. In this study, microemulsion systems, including a nonionic surfactant (Brij 30), water, and esters selected from two homologous series of C1-C6 alkyl acetates and ethyl C1-C4 carboxylates, respectively, were prepared by the surfactant titration method. Phase transitions leading to the formation of Winsor II and Winsor IV microemulsions were observed and phase diagrams were constructed. The dependences of phase transitions on the salinity and pH and the addition of isopropanol as a co-surfactant were also investigated. Some physical properties, namely density, refractive index, electrical conductivity, dynamic viscosity, and particle size, were measured for a selection of Winsor IV microemulsions, providing further insight into some other phase transitions occurring in the monophasic domains of phase diagrams. Finally, Winsor II microemulsions were tested as extraction solvents for the removal of four tricyclic antidepressant drugs from aqueous media. Propyl acetate/Brij 30/H2O microemulsions provided the best extraction yields (>90%), the highest Nernst distribution coefficients (~40-88), and a large volumetric ratio of almost 3 between the recovered purified water and the resulting microemulsion extract. Increasing the ionic strength (salinity) or the pH of the aqueous antidepressant solutions led to an improvement in extraction efficiencies, approaching 100%. These results could be extrapolated to other classes of pharmaceutical contaminants and suggest ester- and nonionic surfactant-based microemulsions are a promising tool for environmental remediation.

7.
Molecules ; 28(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37375302

RESUMO

Inhalable coal dust poses a serious threat to coal mining safety, air quality, and the health of miners. Therefore, the development of efficient dust suppressants is crucial for addressing this issue. This study evaluated the ability of three high-surface-active OPEO-type nonionic surfactants (OP4, OP9, and OP13) to improve the wetting properties of anthracite via extensive experiments and a molecular simulation and determined the micro-mechanism of different wetting properties. The surface tension results show that OP4 has the lowest surface tension (27.182 mN/m). Contact angle tests and wetting kinetics models suggest that OP4 exhibits the strongest wetting improvement ability on raw coal with the smallest contact angle (20.1°) and the fastest wetting rate. In addition, FTIR and XPS experimental results also reveal that OP4-treated coal surfaces introduce the most hydrophilic elements and groups. UV spectroscopy testing shows that OP4 has the highest adsorption capacity on the coal surface, reaching 133.45 mg/g. The surfactant is adsorbed on the surface and pores of anthracite, while the strong adsorption ability of OP4 results in the least amount of N2 adsorption (8.408 cm3/g) but the largest specific surface area (1.673 m2/g). In addition, the filling behavior and aggregation behavior of surfactants on the anthracite coal surface were observed using SEM. The MD simulation results indicate that OPEO reagents with overly long hydrophilic chains would produce spatial effects on the coal surface. Under the influence of the π-π interaction between the hydrophobic benzene ring and the coal surface, OPEO reagents with fewer ethylene oxide quantities are more prone to adsorb onto the coal surface. Therefore, after the adsorption of OP4, both the polarity and the water molecule adhesion ability of the coal surface are greatly enhanced, which helps to suppress dust production. These results provide important references and a foundation for future designs of efficient compound dust suppressant systems.

8.
Molecules ; 28(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37175362

RESUMO

Owing to their surface active properties, surfactants have numerous applications in different fields of life. In the present research work, the solubilization of reactive red 2 (RR2) has been studied in single and mixed micellar systems (MMS) using UV-visible spectroscopy and electrical conductivity measurements. The interaction of RR2 with ionic micelles of cetylpyridinium chloride (CPC) was investigated. In order to probe the interaction of RR2 in MMS, mixtures of CPC and TX-114 (Triton X-114, a nonionic surfactant) were used. UV-visible spectroscopy has been used to obtain the degree of solubilization of RR2 in terms of the partition coefficient (Kc) and Gibbs free energy of partitioning (ΔG°p). Electrical conductivity data have been employed to detect the critical micelle concentration (CMC) of the surfactant systems in the presence of RR2 and, accordingly, to calculate the thermodynamic parameters of the micellization. From the obtained data, it is concluded that the micellization is spontaneous at all studied temperatures. Moreover, the micellization was observed to be driven by both enthalpy and entropy. The results also indicated that MMS have better solubilizing power than single micellar solutions.

9.
Chemosphere ; 335: 139043, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37244551

RESUMO

The research found that mixed anionic-nonionic surfactants have synergistic wetting performance which can be added to the spray solution to greatly enhance the wettability to coal dust. In this study, based on the experiment data and some synergism parameters, and a 1:5 ratio of fatty alcohol polyoxyethylene ether sulphate (AES)-lauryl glucoside (APG) has the best synergism, resulting in a highly wettable dust suppressant. Additionally, the wetting processes of different dust suppressant on coal were comparatively simulated by molecular dynamics. Then, the electrostatic potential on the molecular surface was computed. Following this, the mechanism of surfactant molecule regulation of coal hydrophilicity and the advantage of the interspersed arrangement of AES-APG molecules in the mixed solution were proposed. Also, based on the computation of highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels and binding energy calculations, a synergistic mechanism of the anionic-nonionic surfactant is proposed from the perspective of enhanced hydrogen bonding between the hydrophilic part of the surfactant and the water molecule. Overall, these results present a theoretical basis and development strategy for the preparation of highly wettable mixed anionic and nonionic dust suppressants for different coal types.


Assuntos
Carvão Mineral , Surfactantes Pulmonares , Molhabilidade , Adsorção , Tensoativos/química , Poeira
10.
Nanotechnology ; 34(26)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36972569

RESUMO

Plasma-based sputtering onto liquids (SoL) is a straightforward approach for synthesizing small metal nanoparticles (NPs) without additional stabilizing reagents. In this work, nonionic surfactant Triton X-100 was used for the first time as a host liquid for the SoL process and the production of colloidal solutions of gold, silver and copper NPs was demonstrated. The average diameter of spherical Au NPs lies in the range from 2.6 to 5.5 nm depending on the conditions. The approach presented here opens the pathway to the production of concentrated dispersions of metal NPs of high purity that can be dispersed in water for future usage, therefore extending further the reach of this synthesis pathway.

11.
Bioengineering (Basel) ; 9(12)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36550992

RESUMO

A polyacrylamide polysaccharide hydrogel (PASG) containing a nonionic surfactant of the polyoxyethylene nonylphenyl ethers series (NP14) has been adapted to the fabrication of a reusable cost-effective ultrasonic tissue-mimicking phantom for real-time visualization of the thermal lesions by high intensity focused ultrasound (HIFU) irradiation. The constructed NP14 (40% in w/v) PASG is optically transparent at room temperatures, and it turns out to be opaque white as heated over the clouding points of about 55 °C and returns to its original transparent state after cooling. The acoustic property of the proposed phantom is similar to those of human liver tissues, which includes the acoustic impedance of 1.68 Mrayls, the speed of sound of 1595 ± 5 m/s, the attenuation coefficient of 0.52 ± 0.05 dB cm-1 (at 1 MHz), the backscatter coefficient of 0.21 ± 0.09 × 10-3 sr-1 cm-1 (at 1 MHz), and the nonlinear parameter B/A of 6.4 ± 0.2. The NP14-PASG was tested to assess the characteristic information (sizes, shapes, and locations) of the thermal lesions visualized when exposed to typical HIFU fields (1.1 MHz, focal pressure up to 20.1 MPa, focal intensity 4075 W/cm2). The proposed NP14-PASG is expected to replace the existing costly BSA-PASG used for more effective testing of the performance of therapeutic ultrasonic devices based on thermal mechanisms.

12.
Molecules ; 27(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36364294

RESUMO

Detergent formulations for cleaning a carbonized soil­degreasers­typically comprise surfactants, organic solvents, phosphate-based cleaning agents, and alkaline agents, which results in high pH values (>11) that raise human and environmental risks. It is important to develop eco-friendly and safer degreasers, while maintaining their cleaning efficiency. In this work, simple degreaser formulations, with a pH below 11 and without phosphates, were developed by using a mixture of solvent, surfactant, and water to remove carbonized soil. The efficiency of the new degreaser formulations (with 5 wt% solvent, 5 wt% nonionic or ionic surfactant, and 90 wt% water) was evaluated by an abrasion test in the removal of carbonized soil from ceramic and stainless steel surfaces and compared with a commercial product. The results obtained show that the formulations comprising isopropylene glycol (IPG) with C11−C13 9EOs and diethylene glycol butyl ether (BDG) with octyltrimethylammonium octanoate ([N1118][C8O2]) present the best cleaning efficiency for both surfaces. The composition of these formulations was optimized for each surface using a mixture design. The resulting formulations, despite having a simpler composition, a pH lower than 11, and being phosphate-free, presented a cleaning efficiency equal or slightly higher than the commercial control. These results show that it is possible to design degreasers that are much less aggressive to the environment and user, while simultaneously fulfilling the market requirements.


Assuntos
Detergentes , Solo , Humanos , Tensoativos/química , Água , Solventes
13.
Nano Lett ; 22(21): 8574-8583, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36279311

RESUMO

A highly stable interface for aqueous rechargeable Zn batteries is of importance to inhibit the growth of Zn dendrites and suppress the side reactions. In this work, we have developed a stable honeycomb-like ZnO passivation protective layer on the Zn surface, which is in situ generated with the assistance of a nonionic surfactant additive (polyethylene glycol tert-octylphenyl ether, denoted as PEGTE). The ZnO passivation layer can facilitate the uniform distribution of the electric field, guiding the uniform deposition of Zn2+ and inhibit the generation of dendrites. As a result, the symmetric cell using the electrolyte with PEGTE shows an excellent performance at high areal capacity, reflected by stable cycling for over 2400 h at 5 mAh/cm2 and 1300 h at 10 mAh/cm2. The full cell paired with V2O5 demonstrates a long lifespan for more than 600 cycles at a low negative/positive capacity ratio.

14.
Molecules ; 27(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35897880

RESUMO

The wetting properties of the rhamnolipid and surfactin mixtures with Triton X-165 were considered based on the contact angle measurements of their aqueous solution on the polytetrafluoroethylene (PTFE), polymethyl methacrylate (PMMA) and quartz (Q) surfaces. The obtained contact angle isotherms were described by the exponential function of the second order as well as by Szyszkowski equation in some cases. Using the contact angle isotherms of individual biosurfactants and TX165 as well as the earlier obtained isotherms of their surface tension the contact angle isotherms of the biosurfactants mixtures with TX165 were deduced. As follows the presence of the maxima on the contact angle isotherms of the biosurfactants mixtures with TX165 is justified. They do not prove negative adsorption of the biosurfactant and TX165 at the interfaces. However, the mutual exchange of the biosurfactant and TX165 molecules is observed in the layers at the interfaces. The concentration of the studied mixtures at the PTFE-solution interface was established to be close to that at the solution-air one but that at the PTFE-air is equal to zero. However, the concentration of the studied mixtures at the PMMA-solution and quartz-solution is greater than zero. The concentration at the PMMA(quartz)-air and PMMA(quartz)-solution interfaces is smaller than that at the solution-air one.


Assuntos
Polimetil Metacrilato , Quartzo , Derivados de Benzeno , Glicolipídeos , Polietilenoglicóis , Politetrafluoretileno , Tensoativos
15.
Carbohydr Polym ; 292: 119642, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35725155

RESUMO

Interaction of binary chitosan/nonionic surfactant (NIS) system with sodium dodecyl sulfate (SDS) in aqueous solution is described using turbodimetry, light scattering, electophoretic mobility and cryogenic electron microscopy. The formation of insoluble CHI/SDS complexes is weakened with a decrease in molecular weight of chitosan and critical micelle concentration of NIS as well as with an increase in NIS concentration. Soluble chitosan/NIS complexes absorb SDS molecules until the charge of mixed chitosan/NIS/SDS complexes reaches a critical value that depends on chitosan molecular weight followed by aggregation of primary electrostatic complexes via hydrogen bonding to complex nanoparticles. In contrast to formation of asymmetric swarm-like structures in the binary chitosan/SDS system, the aggregation of complex nanoparticles in the ternary chitosan/NIS/SDS system occurs by a head-to-tail binding mechanism with formation of elongated filamentous microstructures. The finding can be promising for preparation of microbiologically stable pharmaceutical and cosmetic compositions and drug delivery systems containing mixed surfactants.


Assuntos
Quitosana , Quitosana/química , Micelas , Dodecilsulfato de Sódio/química , Tensoativos/química
16.
Des Monomers Polym ; 25(1): 89-97, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431615

RESUMO

The polymerization of aniline hydrochloride by inverse microemulsion in a batch process and the semicontinuous process was studied as a function of the surfactant ionic and nonionic. Polymerizations were carried out at 60°C for 4 h with a yield polymer of circa 67 and 27% wt. for ionic and nonionic surfactants. The conductivity of synthesized polyaniline by the semicontinuous process is higher up to three orders of magnitude than that of the batch process for both surfactants. The calculating degree of oxidation by UV-Vis showed the relative intensities of the quinoid to benzenoid unit around one. The morphology was determined by Scanning Electron Microscopy (SEM) and observed that the formation of the different morphologies is due to the self-assembly behavior of surfactant. The diameter z-average particle size (Dz) was studied by Transmission Electron Microscopy (TEM), which determined that the diameter particle in a semicontinuous state is larger than the one produced in a batch; this is due to the control of monomer addition in the system. These findings suggest that the polymerization process and the type of surfactant influence the properties of polyaniline.

17.
Gels ; 8(3)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35323272

RESUMO

Interfacial interaction amongst the antidepressant drug-imipramine hydrochloride (IMP) and pharmaceutical excipient (triton X-100 (TX-100-nonionic surfactant)) mixed system of five various ratios in dissimilar media (H2O/50 mmol·kg-1 NaCl/250 mmol·kg-1 urea) was investigated through the surface tension method. In addition, in the aqueous solution, the 1H-NMR, as well as FT-IR studies of the studied pure and mixed system were also explored and deliberated thoroughly. In NaCl media, properties of pure/mixed interfacial surfaces enhanced as compared with the aqueous system, and consequently the synergism/attractive interaction among constituents (IMP and TX-100) grew, whereas in urea (U) media a reverse effect was detected. Surface excess concentration (Γmax), composition of surfactant at mixed monolayer (X1σ), activity coefficient (f1σ (TX-100) and f2σ (IMP)), etc. were determined and discussed thoroughly. At mixed interfacial surfaces interaction, parameter (ßσ) reveals the attractive/synergism among the components. The Gibbs energy of adsorption (ΔGadso) value attained was negative throughout all employed media viewing the spontaneity of the adsorption process. The 1H NMR spectroscopy was also employed to examine the molecular interaction of IMP and TX-100 in an aqueous system. FT-IR method as well illustrated the interaction amongst the component. The findings of the current study proposed that TX-100 surfactant could act as an efficient drug delivery vehicle for an antidepressant drug. Gels can be used as drug dosage forms due to recent improvements in the design of surfactant systems. Release mechanism of drugs from surfactant/polymer gels is dependent upon the microstructures of the gels and the state of the drugs within the system.

18.
J Colloid Interface Sci ; 618: 78-87, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35334364

RESUMO

HYPOTHESIS: Nonionic alkyl ethoxylate surfactants are widely used in agrochemicals to facilitate the permeation of systemic herbicides and fungicides across the plant waxy film. Industrial grade surfactants are often highly mixed and how the mixing affects their interactions with pesticides and wax films remains largely unexplored. A better understanding could enable design of mixed nonionic surfactants for herbicides and fungicides to maximize their efficiency and reduce wastage whilst controlling their impact on plant wax films. EXPERIMENT: In this study, nonionic surfactants with general structure n-oxyethylene glycol monododecyl ether (C12En) were used to form surfactant mixtures with the same average ethoxylate numbers but different hydrophilic-lipophilic balance (HLB) values. Their mixed micellar systems were then used to solubilize a herbicide diuron (DN) and a fungicide cyprodinil (CP), followed by plant wax solubilization upon contact with wax films. These processes were monitored by 1H NMR and SANS. FINDING: Pesticide solubilization made surfactant micelles effectively more hydrophobic but subsequent wax dissolution caused pesticide release and the restoration of the micellar amphiphilicity. Nonionic surfactants with lower HLBs form larger nanoaggregates, show enhanced wettability, and have better ability to solubilize and permeate pesticides across the wax film, but may cause significant damage to plant growth. These observations help explain why herbicides applied on weeds would benefit from surfactants with lower HLB values while fungicides require surfactants with HLBs to balance between delivery efficiency and potential phytotoxicity risks.


Assuntos
Fungicidas Industriais , Herbicidas , Praguicidas , Herbicidas/química , Micelas , Praguicidas/química , Solubilidade , Tensoativos/química , Ceras
19.
Adv Colloid Interface Sci ; 302: 102618, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35245855

RESUMO

In our previous study (Mustan et al. 2021) we showed that foams formed from two oil-soluble nonionic surfactants (Span 60 and Brij 72) can remain stable for more than 10 days at room temperature at high sugar concentration. The major aim of the current study is to reveal the interrelation between the surfactant structure and foam stability by investigating 6 polyoxyethelene alkyl ethers and 12 fatty acid esters with a wide variety of hydrophobic chain lengths (C12; C16; C18 and C18:1) and hydrophilic head-groups (sorbitol, glycerol, sucrose). Foams stable for more than 100 days at room temperature are obtained when sucrose palmitate or stearate (P1670 or S1670) are used as surfactants. This exceptional foam stability is related to the gelation of the aqueous phase and to the formation of solid adsorption layer with zero surface tension upon compression, thus preventing water drainage and decelerating the bubble Ostwald ripening. The foam stability decreases with (i) increasing the number of EO groups in polyoxyethylene alkyl ethers and in fatty acid sorbitan esters; (ii) decreasing the number of C-atoms in the surfactant tail for all studied surfactants; (iii) addition of double bond in the surfactant tail. The lower foam stability in all three cases is related to the worse packing of the surfactant molecules within the adsorption layer, leading to faster Ostwald ripening and subsequent bubble coalescence. The diesters present as admixture in the fatty acid esters play an important role in the foam stabilization by further compacting the adsorption layers and lowering the rate of Ostwald ripening. These conclusions can be used as a predictive tool for surfactant selection in the development of food or pharmaceutical foam concentrates that can be diluted before final use.


Assuntos
Tensoativos , Água , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície , Tensão Superficial , Tensoativos/química , Água/química
20.
J Colloid Interface Sci ; 616: 129-140, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35203027

RESUMO

HYPOTHESIS: Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) could be adsorbed on the silica surface via the hydrogen bonding between PEO and silanol (SiOH) groups. This interaction would be inhibited once SiOH is dissociated to SiO- at an increased pH value. Besides, the adsorption should be affected by temperature considering the nature of hydrogen bond. Hence, we speculate that silica nanoparticles modified in situ by adsorbed PEO-PPO-PEO possess a pH- and thermo-sensitive surface activity, making them a stimuli-responsive Pickering emulsifier. EXPERIMENTS: Paraffin oil-in-water emulsions stabilized by silica nanoparticles and PEO-PPO-PEO were prepared. Stabilities, droplet morphologies and stimuli-responses were systematically studied using bottle test, optical microscopy and cryo-scanning electron microscopy (cryo-SEM). To clarify the emulsification mechanism, interfacial viscoelastic moduli and desorption energies were determined using the data obtained from drop shape analysis. FINDINGS: Silica nanoparticles are hydrophobized and flocculated by adsorbed PEO-PPO-PEO at a relatively low pH and room temperature. Upon the pH or the temperature increased, particles regain their hydrophilicity and dispersity due to the desorption of surfactants. Emulsions stabilized by these surfactant-modified particles are pH- and thermo-responsive and can be repetitively switched between stabilization and destabilization. The switch temperature is controlled by the PEO length. The emulsification mechanism is verified in view of interfacial viscoelasticity and desorption energy. These findings demonstrate a novel and simple strategy of preparing pH- and thermo-responsive Pickering emulsions desirable to many industrial applications.


Assuntos
Nanopartículas , Dióxido de Silício , Emulsões/química , Concentração de Íons de Hidrogênio , Nanopartículas/química , Polímeros , Dióxido de Silício/química , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...